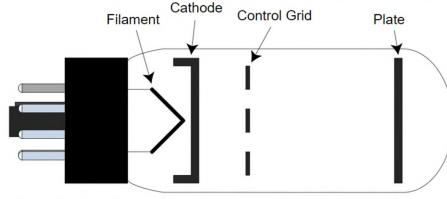


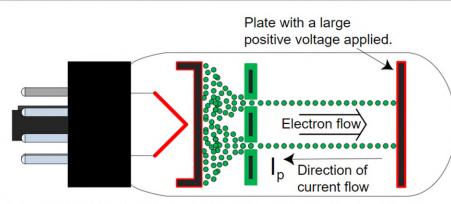
TUBE MATCHING

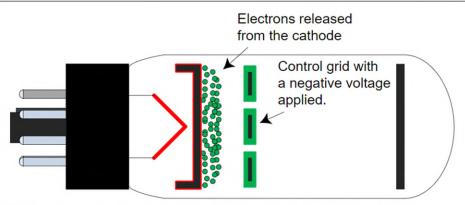
Dave Rossetti 15 July 2018

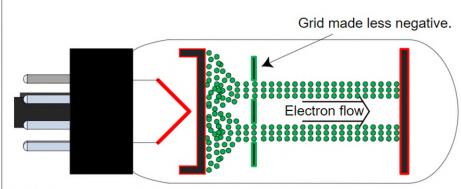
2A3


Mid-Atlantic Antique Radio Club

Collecting and Preserving Our Electronics Heritage


WHAT ARE MATCHER TUBES?


SIMPLIFIED TUBE BASICS


1. The fundamental parts of a vacuum tube drawn as they might be seen on a circuit schematic.

3. The plate is given a large positive voltage to attract the electrons while a negative grid voltage restricts electron flow.

2. The filament receives a voltage allowing it to heat up the cathode freeing electrons for current flow.

4. The grid is made less negative allowing for an increased flow of electrons from cathode to plate

BASIC MATCHING CHARACTERISTICS

- × Include:
 - + Manufacturing Batch, Matching Date Codes, and/or Appearance
 - + Transconductance
 - + Idle Plate Current

SYMMETRY IN CONSTRUCTION

- × Manufacturing Batch
- × Matching Date Codes
- × Appearance
- × Relabeled Tubes

TYBE YABIABILITY IN THE SAME BATCH

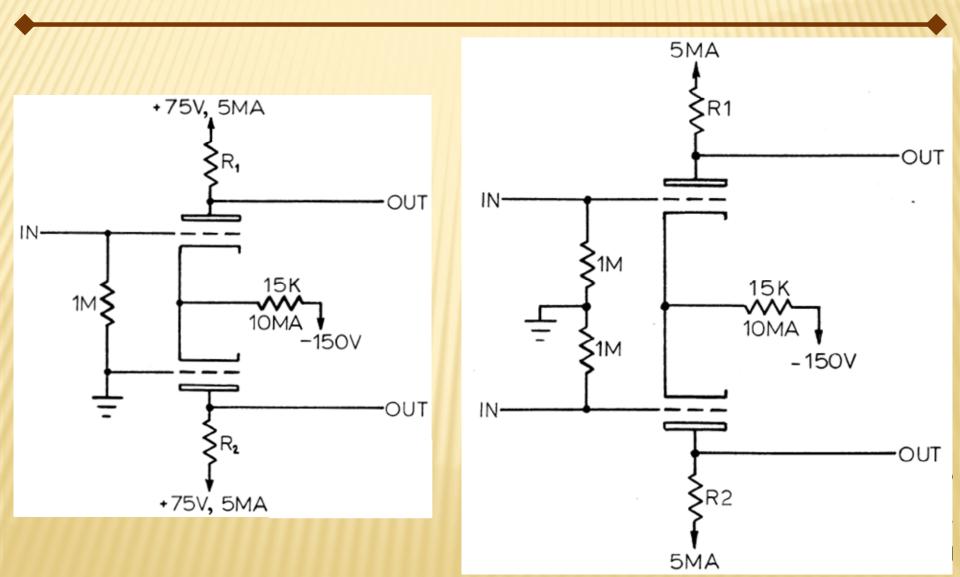
RCA Parameter Limits for New Tubes

	TRANSCONDUCTANCE (µS)						- PLATE	21			
	Cust.	Fact.		Fact.	Cust.	Cust.	Fact.		Fact.	Cust.	Measured at
Type	Min.	Min.	Bogie	Max.	Max.	Min.	Min.	Bogie	Max.	Max.	$E_{p}/E_{g2}/E_{c}$
10	-	1350	1600	1900	-	13	18.5	24	-	-	425 V / - / - 35 V
12A	-	1300	1600	1900	-	4.5	6.2	8.5	-		135 V / - / -9 V
22	1.0	300	350	425	-	1.2	1.7	2.3	-	-	135 V / 45 V / -1.5 V
24A	900	950	1100	1250	1300	2.8	3.1	4.2	5.0	5.3	250 V / 90 V / -3 V
26	120	875	1075	1225	120	4.0	5.5	7.0		12	135 V / - / -9 V
27	815	850	1000	1150	1185	3.1	3.5	5.2	6.9	7.3	250 V / - / -21 V
40	-	300	400	525	-	0.40	0.45	0.90	-	-	135 V / - / -1.5 V
45	1550	1650	2100	2500	2550	20	22	30	38	40	250 V / - / -50 V
50	1550	1700	2100	2500	2550	40	42	55	68	70	450 V / - / -80 V
71A	1450	1550	1700	1850	1950	14.0	15.0	20.0	25.0	26.0	180 V / - / -40.5 V
199		350	425	570	-1	1.6	2.4	3.5	-	3 -)	90 V / - / -4.5 V
201A	-	600	725	825		Davidska (***)	1.7	2.4	3.2	-	90 V / - / -4.5 V
2A3	3200	3450	4000	4550	4800	22.5	28.0	40.0	52.0	57.5	300 V / - / -60 V
0RG2	8300	8600	11,300	14,000	14,300	30	31	48	59	60	250 V / 250 V -7.3 V
6L6	5400	5550	6000	6450	6600	60	62	72	82	84	250 V / 250 V / -14 V
61.6GB	Same as for 61.6					62	64	72	80	82	Same as for 61.6
6L6GC	5300	5400	6000	6600	6700	58	60	72	84	86	Same as for 6L6
6V6GT	3500	3600	4100	5400	5500	33	34	45	56	57	250 V / 250 V -12.5 V
5881	5500		6100	*	6700	65	*	75	*	85	Same as for 6L6
7027A	5300	5400	6000	6900	7000	58	60	72	84	86	Same as for 6L6
6973	3800	4000	4800	5600	5800	57.5	60	65	-	-	250 V / 250 V / -15 V

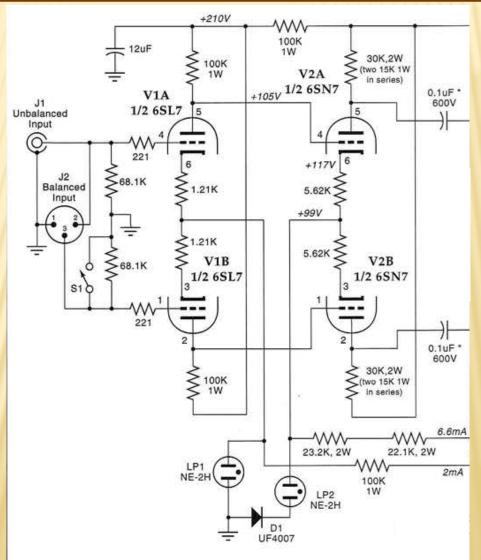
TRANSCONDUCTANCE (GM OR G_M)

- × Transconductance (Gm, g_{m,} Mhos, or Siemens)
 - Incremental change in plate current (measured in milliamps [mA] or microamps [µA])
 - + divided by the incremental change in grid voltage
 - + at a given operating point
 - + The main measure of tube gain

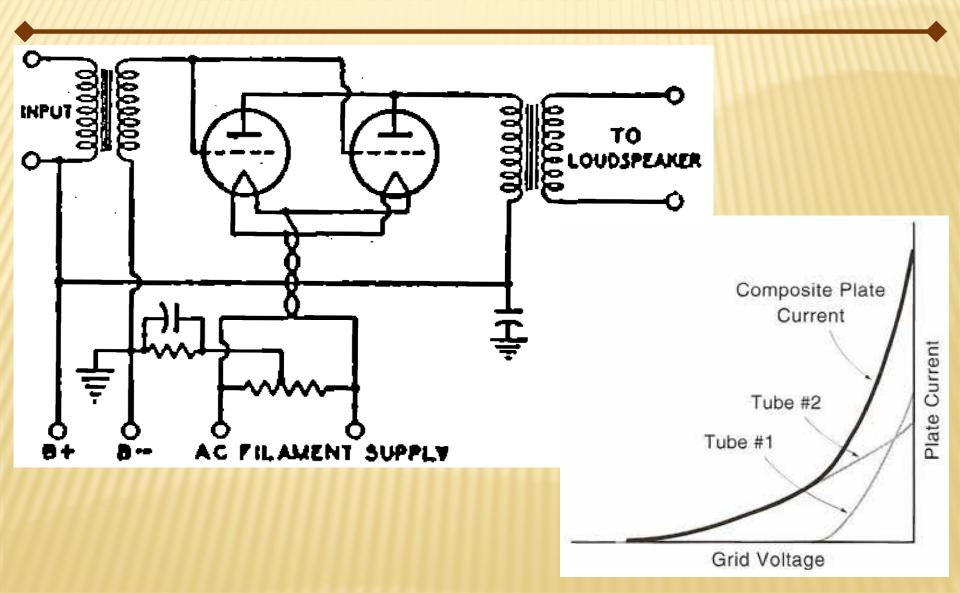
IRLE PLATE CURRENT

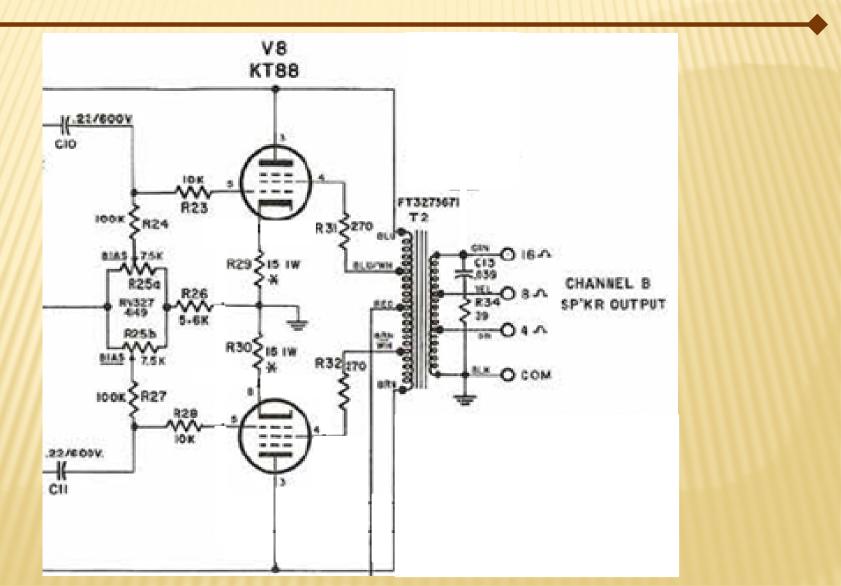

× Amplifier tubes have an Idle Plate Current

- + low-level driver
- + output tubes)
- > Determined by:
 - + Positive DC plate voltage
 - + Negative DC grid-to-cathode bias voltage
 - + Other characteristics of the tube itself
- In certain applications, matching Idle Plate Current very is important


THE NEER FOR MATCHER TUBES

- Circuits that do need matching often need only certain matched parameters
- × Circuits needing some matching include:
 - + Balanced DC Amplifies
 - + Differential Amplifiers/Phase Inverters
 - + Paralleled tubes
 - + Push-pull output stages

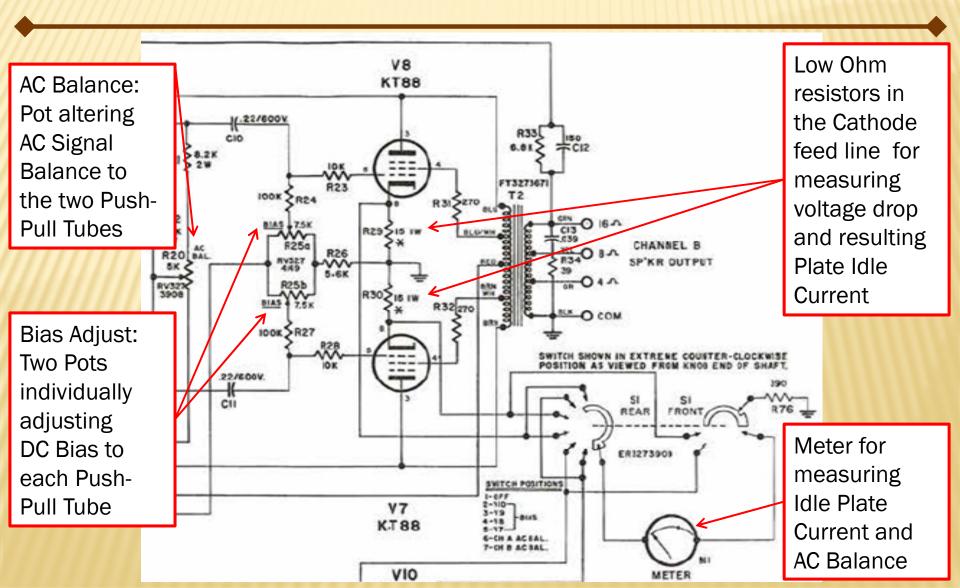

RC AND RIFFERENTIAL AMPLIFIERS

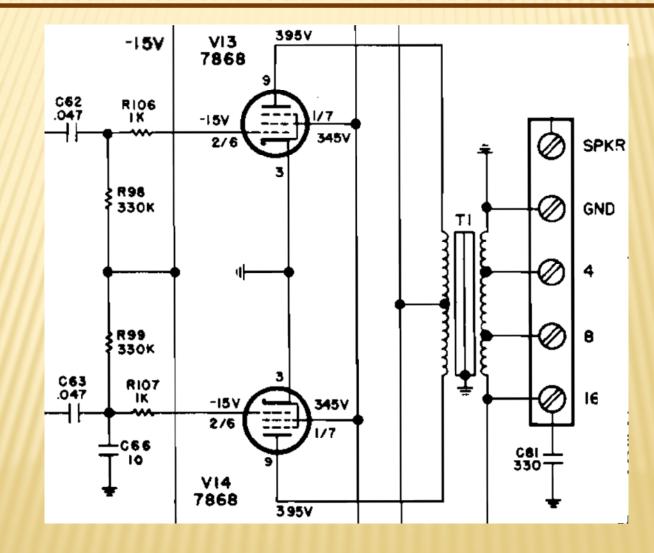

AND PHASE INVERTER AND RIFFERENTIAL AMPLIFIER

POWER AMPLIFIER WITH TUBES IN PARALLEL

PUSH-PULL CIRCUITS

CANCELING DC FLUX IN THE OUTPUT TRANSFORMER


MAIN CONCERN REGARRING TRANSFORMER SATURATION - REP PLATING


DEGREE OF MATCHING REQUIRED FOR PUSH-PULL OUTPUT TUBES

- Depends on the sophistication of the bias and drive circuits
- × Considerations include:
 - + Bias Adjustment (individual tube) or Bias Balance Adjustment (DC Balance)
 - + AC Balance
 - + Single Bias Adjustment per Channel or No Bias Adjustment

AC BALANCE AND BIAS ADJUSTMENT

NO BIAS ADJUSTMENT OR SINGLE BIAS ADJUSTMENT PER CHANNEL

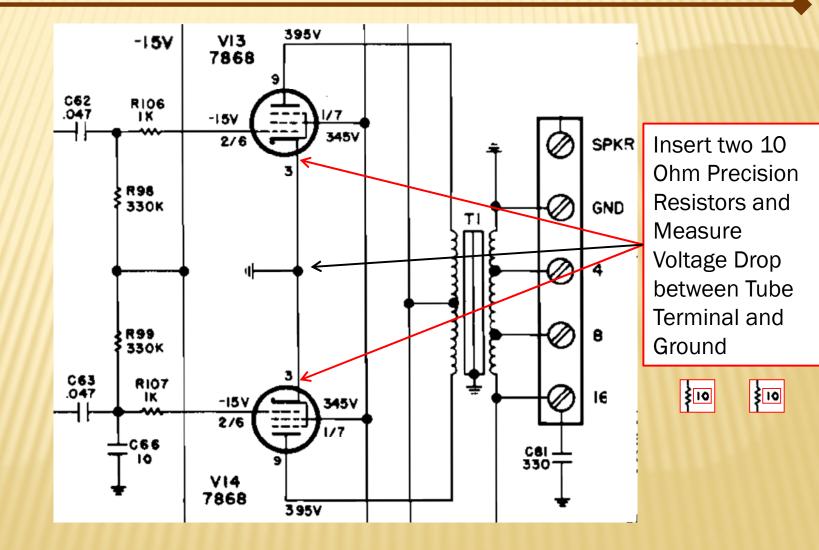
PRINCIPAL TECHNIQUES FOR MATCHING

- × Burn-In Requirements
- Matching methods include:
 - + Tube Testers
 - + Static DC Measurements
 - + Curve Tracing

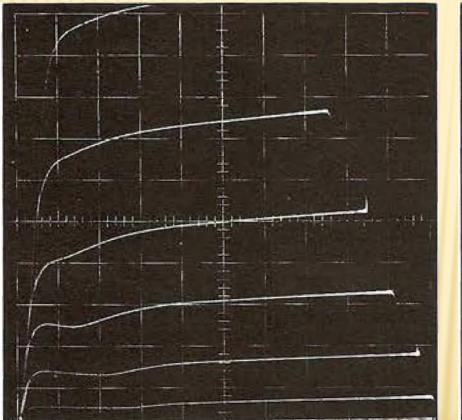
TUBE TESTER MATCHING

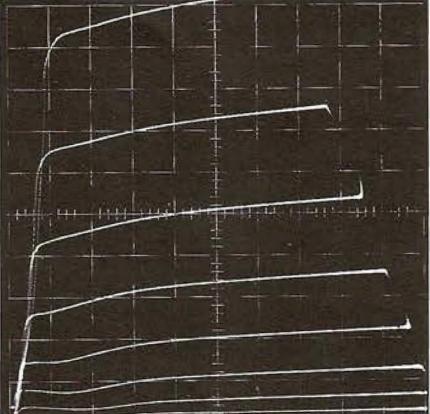
Hickok 6000

USM-118 Cardmatic



Western Electric KS-15750 {made by Hickok)


STATIC DC MEASUREMENTS


INSTALLING A CATHORE RESISTOR FOR IN-SITU TUBE MATCHING

CURVE TRACERS

British KT66 (grey carbon inner coating)

Mid-1970s? GE 7581/KT66

SOURCING CURVE TRACERS

Tektronix 570

MaxiMatcher II

Amplitrex AT1000

PURCHASING MATCHER TUBES

IN SUMMARY

- Not a black art, nor necessary in every application
- × Small low-level tubes seldom matching
 - + Except DC amplifier or fully-balanced circuits
- Closely-matched output tubes only needed for amps without DC bias controls

REFERENCES

- * Tube Matching, John Atwood, Vacuum Tube Valley, Issue 2, Volume I, Fall 1995, pages 22-24
- 30 Watts Push-Pull with Svetlana SV300Bs, Kevin Kennedy, Vacuum Tube Valley, Issue 12, Summer 1999, pages 25-29
- **Golden Age of Stereo, Harman-Kardon Citation I, II**, Charlie Kittleson, **Vacuum Tube Valley**, Issue 4, Spring/Summer 1996, pages 15-20
- * RCA Receiving Tube Manual, RC-29, 1973
- × Curve Tracers, Tube Testers and Classic Electronic Test Gear, Alan Douglas, 2000, pages 14-22
- **μTracer 3+**, <u>http://www.dos4ever.com/uTracer3/uTracer3_pag0.html</u>
- * The Virtues of Power Tube Matching, Roger A. Modjeski, http://www.ramlabs-musicreference.com/virtues.html
- × Mu, Gm, and Rp and how Tubes are Matched, Roger A. Modjeski, http://www.tubeaudiostore.com/tubmatdem.html
- × Why Should I Match My Tubes? https://www.apexmatching.com/why-should-i-match-my-tubes
- × MixiMatcherII, http://www.maximatcher.com/maximatcher.html
- Introduction to Vacuum Tube Audio Electronics, Michael S. McCorquodale, Ph.D., http://web.eecs.umich.edu/~mmccorq/diversions/introduction/
- * Amplitrex Audio Products, http://amplitrex.com/
- **x** Citation II Bias/Balance Adjustment Procedure, <u>http://www.mcshanedesign.net/adjust2.htm</u>
- * Tube Collector, Tube Collectors Association, December 2001, Vol. 3, No. 6 page 7 www.tubecollectors.org